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Abstract 

Brain regions’ rates of age-related volumetric change after traumatic brain injury (TBI) are unknown. 

Here we quantify these rates cross-sectionally in 113 persons with recent mild TBI (mTBI), whom we 

compare against 3418 healthy controls (HCs). Regional gray matter (GM) volumes were extracted 

from magnetic resonance images (MRIs). Linear regression yielded regional brain ages and the 

annualized average rates of regional GM volume loss. These results were compared across groups 

after accounting for sex and intracranial volume. In HCs, the steepest rates of volume loss were 

recorded in the nucleus accumbens, amygdala and lateral orbital sulcus. In mTBI,  80% of GM 

structures had significantly steeper rates of annual volume loss than in HCs. The largest group 

differences involved the short gyri of the insula and both the long gyrus and central sulcus of the 

insula. No significant sex differences were found in the mTBI group, regional brain ages being oldest 

in prefrontal and temporal structures. Thus, mTBI involves significantly steeper regional GM loss 

rates than in HCs, reflecting older-than-expected regional brain ages. 
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Abbreviations 

AD  Alzheimer’s disease 

ADNI  Alzheimer’s Disease Neuroimaging Initiative 

AG  age gap 

BA  biological age 

CA  chronological age 

F  female(s) 

FS  FreeSurfer 

HC  healthy control 

HCP  Human Connectome Project 

M  male(s) 

MAE  mean absolute error 

MRI  magnetic resonance imaging 

mTBI  mild traumatic brain injury 

TBI  traumatic brain injury 

TRACK-TBI Transforming Research and Clinical Knowledge in TBI  
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Introduction 

Chronological age (CA) is a prominent risk factor for numerous diseases and pathological conditions 

of the nervous system. However, because aging rates vary from person to person, from body system 

to body system, and from brain region to brain region (1), biological age (BA) has come to the 

forefront of recent research as a clinically relevant biomarker of disease risk and mortality (2). BA 

has been a useful measure to (I) quantify atypical deviations from typical aging in persons affected 

by disease, (II) assist the process of mapping similarities in the abnormal aging trajectories of 

persons with various diseases, and (III) estimate the change in conditional risk for a certain disease 

given the presence of another, as in the case of Alzheimer’s disease (AD) risk change after traumatic 

brain injury (TBI) (3-5). Illustratively, brain BA is often more useful than CA when assessing the risk of 

neurodegenerative diseases or when predicting their clinical outcomes (6). Recent years have 

witnessed high interest and considerable success in leveraging magnetic resonance imaging (MRI) to 

predict brain BA with ever-higher accuracy via machine learning (ML) (3-5,7). Normative patterns of 

brain aging identified using these approaches in typically aging adults can help to identify and to 

quantify the pathological alterations of brain structure and/or function observed in conditions 

ranging from TBI (8) to Parkinson’s disease (PD) and AD (5-7). Aside from estimating brain BA from 

raw MRIs, studies using such approaches have also relied on descriptive properties of individual 

brain regions (e.g., cortical volume, surface area, mean thickness, mean curvature) to map neural 

and cognitive features indicative of essential tremors, epilepsy, AD, and multiple sclerosis (9).  

Despite the increasing popularity of BA estimation to study these and other brain diseases, 

an insufficient amount of effort has been devoted to the use of brain BA estimation when studying 

the effects of TBI on the aging brain (4,8). Even mild TBI (mTBI) can age the brain through oxidative 

stress, persistent inflammation, and neuronal apoptosis from both primary and secondary injuries 

(9). Such processes, documented in animals, can be studied only indirectly in humans. In the latter, 

however, non-invasive MRI is acquired routinely, having revealed mTBI-related chronic atrophy (10) 
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particularly in the gray matter (11). MRI-derived brain measures are surrogate measures of aging 

that reflect brain atrophy and that facilitate the estimation of BA as a measure of aging (12). 

ML approaches to brain BA estimation offer considerable advantages (3,7). Despite their 

utility, the results of most ML approaches for BA estimation can be difficult or impossible to 

interpret due to the black-box nature of ML. Interpretable ML, a class of techniques still in early 

stages of development, testing, and validation, may soon provide neuroanatomic insights by 

revealing the brain features whose alterations mirror the most prominent distinctions between 

typical and abnormal brain aging patterns (13). However, even when such approaches become 

common, their validation will greatly benefit from the availability of standard, easily interpretable BA 

estimation models against which interpretable ML frameworks can be validated. 

Currently, both white- and black-box solutions for brain BA estimation typically use T1-

weighted structural MRIs to estimate brain BA (2,4). Here we investigate the effects of mild TBI 

(mTBI) on brain’s structure relative to the aging patterns of healthy controls (HCs). In addition, we 

consider differences in these effects between sexes, as well as sex-dependent regional differences in 

brain aging in both HCs and mTBIs (13). The link between participants’ regional BAs and their 

cognitive performance was also examined. We choose a cross-sectional design for a wide range of 

age coverage and due to greater MRI data availability. Our primary goals are to (I) quantify age-

related cortical morphology changes in a sex-independent manner, (II) identify regions that change 

differently with age across sexes, (III) find regions whose aging is affected by mTBI, and to (IV) 

identify sex dimorphisms in mTBI-related brain structure changes.  

 

Methods 

Participants. This study was approved by the Institutional Review Board at the University of 

Southern California and was carried out in accordance with the U.S. Code of Federal Regulations (45 
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C.F.R. 46) and with the Declaration of Helsinki. The T1- and T2-weighted MRI volumes of HC 

participants were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, 

adni.loni.usc.edu) repository (  = 513, 278 females, age: µ = 75 y, σ = 7 y, range: 56 – 95 years (y)), 

the Human Connectome Project (HCP) Young Adults (YA,   = 1112, 605 females, age: µ = 29 y, σ = 4 

y, range: 22 – 37 y, HCP Aging (HCP-A,   = 508, 294 females, age: µ = 56 y, σ = 12 y, range: 36 – 80 y), 

and the UK Biobank (  = 1285, 676 females, age: µ = 63 y, σ = 10 y, range: 45 – 83 y). The aggregate 

HC cohort contained     = 3418 participants (1853 females; age: µ = 53 y, σ = 19 y, range: 22 – 95 

y).      

MRIs for      = 113 participants with mTBI were obtained approximately 24 weeks post 

injury (44 females, age: µ = 43 y, σ = 17 y, range: 21 – 95 y, chronicity: µ = 168 days, σ = 8 days). 

These MRIs were acquired from subjects recruited with the assistance of board-certified clinicians 

and of other healthcare professionals. Participant demographics and statistics are listed in Table 1. 

All mTBI MRI data were from mTBI patients with Glasgow Coma Scale (GCS) scores no lower than 13. 

The GCS objectively quantifies head injury severity based on responsiveness measured by eye-

opening, motor, and verbal responses (scores from 3 to 8, 9 to 12, and above 12 indicate TBIs of 

severe, moderate and mild severity, respectively) (14). Further details, including injury severity, 

chronicity, and inclusion/exclusion criteria are available in detail in our prior reports (15). Briefly, 

inclusion criteria were (I) a ground-level fall involving direct head trauma, (II) a GCS score greater 

than 12, (III) loss of consciousness no longer than 30 minutes, (IV) post-traumatic amnesia of no 

more than 24 hours, and (V) no evidence of gross TBI pathology on clinical MRI scans. Exclusion 

criteria were (I) a clinical history of cognitive impairment, neurological and/or psychiatric disease 

prior to injury and (II) a clinical history of psychotropic substance abuse. Data on head impact 

location were not available, and rarely are in TBI studies. Although this variable may affect brain 

aging patterns and their morphometrics (as evidenced by animal studies with more precise 

experimental control (16)), our inability to account for this factor explicitly motivated our strategy to 

average results across hemispheres.  
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Cognitive assessments. Six cognitive measures were obtained using the Brief Test of Adult Cognition 

Telephone (BTACT) (17), a phone-based cognitive assessment comprising six standard measures of 

memory, processing speed, verbal fluency, and reasoning described in detail elsewhere (18).  

Episodic verbal memory (EVM) was quantified using the Rey Auditory Verbal Learning Test, which 

quantifies immediate recall (EVMI) and delayed recall (EVMD) of a 15-item word list. Working 

memory span (WMS) was assessed using the backward digit span task. Inductive reasoning (IR) was 

assessed using a number sequence completion task. Processing speed (PS) was measured using a 

timed backward counting task. Verbal fluency (VF) was examined using a timed task in which 

participants name as many items within a category (i.e., animals, male names, and fruit/furniture) as 

possible. 

Neuroimaging. Data acquired by the HCP Consortium were obtained using a protocol described 

elsewhere and were obtained from the HCP project data repository 

(https://www.humanconnectome.org). ADNI data used in the preparation of this article were 

obtained from the ADNI database (https://adni.loni.usc.edu). Currently led by Principal Investigator 

Michael W. Weiner, MD, the ADNI was launched in 2003 as a public-private partnership. The ADNI’s 

primary goal has been to test whether collection of serial neuroimaging scans, biological markers, 

and clinical and neuropsychological assessments can be combined to measure the progression of 

mild cognitive impairment and early AD. For mTBI participants, T1-weighted MRIs were obtained 

using a 3D magnetization-prepared rapid acquisition gradient echo sequence with repetition time 

(TR) = 1,950 ms, echo time (TE) = 2.98 ms, inversion time (TI) = 900 ms, and voxel size = 1.0 mm × 1.0 

mm × 1.0 mm. T2-weighted MRIs were acquired using TR = 2,500 ms, TE = 360 ms, and voxel size = 1.0 

mm × 1.0 mm × 1.0 mm. Imaging parameters for the publicly available datasets can be found in their 

respective publications (19-22). 

Preprocessing. MRIs acquired from mTBI participants were processed using the freely available 

FreeSurfer (FS, https://surfer.nmr.mgh.harvard.edu/) software library version 6.0.0 (23,24). HCs’ 
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MRIs were downloaded directly from their respective studies’ repositories, for which they had been 

processed using different FS versions (ADNI: 6.0.0 or 7.1.1; HCP-A: 6.0.0 or 7.1.1; HCP-YA: 5.3.0; 

UKBB: 6.0.0). Processing included removal of non-brain tissues, transformation into Talairach space, 

intensity normalization, segmentation into cortical/subcortical structures, surface processing, 

topology correction, and computation of structure-level volumetrics and morphometrics for 165 

brain structures. The values of four types of features (regional cortical volume, surface area, mean 

cortical thickness, and mean curvature) were adjusted for intracranial volume (ICV), assembled, and 

then analyzed using the connectogram workflow of Irimia et al (25). 

Statistical analysis. Because data on head impact location were unavailable, we averaged the values 

of each feature across hemispheres prior to further analysis. This strategy serves to identify bilateral, 

rather than unilateral, effects of TBI. Specifically, averaging structures across hemispheres removes 

structural alterations that are isolated to one hemisphere, which are more likely to be a result of 

acute focal injury (26). We used averages over hemispheres in a univariate linear fixed-effect 

regression model (fitlme, MATLAB; MathWorks, Natick, MA) to quantify the relationship between CA 

and each type of feature (volume, surface area, mean curvature, and mean thickness).  The 

statistical effects of study cohort, sex, and FS version were regressed out. For each cohort (HCs and 

mTBI participants), each feature’s annualized mean rate of change  , its standard error (SE) and 

confidence interval (CI) were calculated as a function of CA and expressed as percentages of the 

feature’s reference value at age 20. For each feature   , this was done by fitting a simple linear 

regression              . For each region’s regression, we tested the null hypothesis 

        after computing the related  -statistic and associated  -value using the MATLAB fitlme 

function. The statistical significance of group differences in   (e.g., females (F) versus males (M), HC 

vs mTBI) was tested using a  -test whose statistic   (        ) √  (    )    (   ) pools 

variance across groups, as recommended by Clogg et al. in the limit of large  , such that the   

distribution converges to a   distribution (27). To compare   across groups within each region, we 

also calculated both (A) the ratio       for each diagnostic group (HCs and mTBI participants), and 

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/advance-article/doi/10.1093/gerona/glad079/7069862 by U
SC

 Law
 user on 27 M

arch 2023



Acc
ep

ted
 M

an
us

cri
pt

 

 

(B) the ratio          after having regressed out sex effects. The ratio          of sex-adjusted 

regression coefficients conveys the factor whereby mTBI participants’ annual rate      of age-

related volume decrease exceeds HCs’ rate    . For example, if     /    = 2, then mTBI 

participants exhibit an annualized rate of volume decrease with age that is twice as fast as the 

reference rate of HCs. We used the Benjamini-Hochberg procedure to correct all  -values for 

multiple comparisons (28). The statistical power of each test was also computed. 

Brain age calculation. For each brain region, we first used a univariate fixed-effect linear regression 

              to estimate the age gap (AG) of region   in HCs by estimating its CA from each 

regional volume    (29). We then implemented bias correction as detailed elsewhere (30). This 

correction addresses the bias of linear regression when estimating the values of structural features 

given the ages of the participant. Briefly, estimating BA involves an inherent bias (31,32) because BA 

estimates become progressively poorer as CAs differ more and more from their sample mean (31). 

Let     and     be biased ( ) and bias-corrected ( ) BA. The biased AG (   ), defined as 

              , is the difference between a subject’s CA and her/his bias-corrected BA. Let CA 

be an   × 1 vector containing the CAs of all   subjects, and similarly for BA. The Euclidean norms of 

these vectors are        and       , respectively. Let  (     ) be the correlation coefficient 

between CA and BA, as computed using the corr function in MATLAB (MathWorks, Natick, MA). 

Then, for each subject  ,       can be computed (30) as 

                  
      

 (     )      
 

Once calculated,     is used to compute the mean absolute error (MAE) of the bias-corrected BA 

estimate    ; the MAE quantifies each brain feature’s ability to estimate BA. Using MAE, we 

quantified the relative ability of each of the four feature types considered here (i.e., regional total 

volume, total surface area, mean cortical thickness, and mean curvature) to estimate BA. 
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 Calculation of    after mTBI. For each feature type and anatomic structure, the linear model whose 

regression coefficients were calculated for HCs is used to estimate BAs for each mTBI participant. In 

other words, for each mTBI participant, we estimated BA using the HC model as a reference for 

typical aging. For each subject, we then calculated AG as previously described. For each feature type 

and structure, the mean AG over subjects provides a mean BA difference between mTBI and HC 

participants that conveys the amount of excessive aging due to mTBI alone. 

Cognitive scores predicted by AGs. For mTBI participants,   = 6 separate linear regressions predicted 

each cognitive score    , where    *1, …, 6+ is one of the six cognitive scores (EVMI, EVMD, WMS, IR, 

VF, or PS) being predicted by the regression in question. To yield standardized regression coefficients 

 , all regression variables (i.e., cognitive scores, CA, and all AGs) were converted to z-scores before 

being used as regressors.  In the omnibus model,    was predicted using CA and the AGs of all   

regional volumes, i.e.,                               where   = 83 is the number of 

brain regions. To study whether AGs, when considered all together, had significant utility in 

predicting cognitive scores above and beyond   ,   = 6 linear regressions were also performed to 

predict    using a reduced model that included only CA as independent predictor, according to the 

equation           . For each cognitive score, the R2 of the reduced (CA only) model was 

subtracted from the R2 of the omnibus (CA and AG) model, to quantify the extent to which the 

omnibus model explained more variance than the reduced model.  

Results 

Because our models predict CA using regional rather than global (whole brain) measures, the MAEs 

reported below reflect each model’s average error across both regions and participants, rather than 

only across participants. The latter is typically the case for most other “whole brain” models that 

estimate global—rather than regional—BAs. Linear models regressing CA against each region’s mean 

curvature, surface area, or mean cortical thickness had bias-corrected MAEs that reflected either 

extreme regression to the mean or minimal, if any, correlation with CA given the mean age and 
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standard deviation of the sample (surface area MAE across regions = 82 y,    across regions = 57 y; 

cortical thickness MAE across regions = 25 y,    across regions = 2 y; curvature MAE across regions = 

16.8 y,    across regions = 0 y; volume MAE across regions = 17 y,    across regions = 2 y). In other 

words, for the average region, the model predicting CA using that region’s volume had an MAE of 17 

y. These results suggest that volume was considerably more informative than the other three types 

of anatomic measures. For this reason, most of our results report on volume relative to its 

dependence on age and use volume for the estimation of regional BAs. 

3.1 Regional volumes’ dependence on age in HCs. eTable 1 lists sex-adjusted linear regression 

coefficients describing HCs’ regional volume dependence on age. Negative values of the   test 

statistic indicate that the dependence of regional volume on CA is steeper in mTBI participants 

compared to HCs, and vice versa if   is positive. Here and throughout this section, all  -values have 

been corrected for multiple comparisons. The regions whose sex-adjusted regression coefficients are 

most significantly different from zero pertain (Figure 1A), in decreasing order of magnitude, to the 

nucleus accumbens (    ± SE (   ) = -0.187%/y ± 0.017%/y,       = -11.06,   = 5.00×10-26, power > 

99%), amygdala (    ± SE(   ) = -0.100%/y ± 0.011%/y,       = -9.32,   = 8.35×10-19, power > 99%), 

lateral orbital sulcus (   ± SE(   ) = -0.096%/y ± 0.018%/y,       = -5.39,    = 1.96×10-7, power > 

99%), posterior transverse collateral sulcus (    ± SE(   ) = -0.091%/y ± 0.017%/y,       = -5.20,   = 

4.88×10-7, power > 99%), and the collateral and lingual sulcus (    ± SE(   ) = -0.091%/y ± 

0.011%/y,       = -7.91,    = 3.91×10-15, power > 99%). All regions’ significant     values are plotted 

on cortical and subcortical surfaces in Figure 2. HCs exhibited no significant sex differences in 

regression coefficients (all   > 0.05, corrected). 

Regional volumes’ dependence on age in mTBI. In mTBI participants, as listed in eTable 2 and plotted 

in Figure 1B, the strongest dependences of regional volume on age were observed in the nucleus 

accumbens (     ± SE(    ) = -0.578%/y ± 0.072%/y;      = -7.98,   = 1.19×10-10, power > 99%), the 

middle temporal gyrus (     ± SE(    ) = 0.451%/y ± 0.086%/y;       = -5.26,   = 1.16×10--5, power > 
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99%), the posterior transverse collateral sulcus (     ± SE(    ) = 0.386%/y ± 0.089%/y;       = -4.31, 

  = 1.64×10-4, power > 99%), inferior temporal sulcus (     ± SE(    ) = 0.368%/y ± 0.073 %/y;      = 

-5.07,   = 2.20×10-5, power > 99%), and the thalamus (     ± SE(    ) = 0.367%/y ± 0.053%/y;      = 

-6.90,   = 1.42×10-8, power > 99%). All regions’ significant      values are plotted on cortical and 

subcortical surfaces in Figure 3. mTBI participants exhibited no significant sex differences in 

regression coefficients (  > 0.05, corrected). 

Group comparison of regression coefficients. The regression coefficients of 38 (i.e., 46%) structures 

differ significantly across HC and mTBI groups (eTable 3, Figure 1C). These structures are in all lobes 

of both hemispheres. In mTBI participants, all but nine brain structures exhibit sex-adjusted linear 

regression coefficients whose magnitudes are at least twice as large as those observed in HCs. When 

comparing mTBI participants to HCs, the structures with the most significant differences in sex-

adjusted   coefficients are (A) the thalamus     ± SE(   ) = -0.077%/y ± 0.009%/y;      ± SE(    ) 

= -0.367%/y ± 0.053%/y,   = -5.37,   = 6.40×10-6, power > 99%;     /    = 4.8, (B) the nucleus 

accumbens (    ± SE(   ) = -0.187%/y ± 0.017%/y;      ± SE(    ) = -0.578%/y ± 0.072%/y,   = -

5.26,   = 5.82×10-6, power > 99%;     /    = 3.09, (C) the cerebellum (    ± SE(   ) = -0.043%/y ± 

0.009%/y;      ± SE(    ) = -0.301%/y ± 0.055%/y,    = -4.60,   = 1.19×10-4, power > 99%;     /    

= 7.0, (D) the middle temporal gyrus (    ± SE(   ) = -0.063%/y ± 0.010%/y and      ± SE(    ) = -

0.451%/y ± 0.086%/y,   = -4.50,   = 1.39×10-4, power > 99%,     /    = 7.2), and (E) the anterior 

cingulate gyrus (    ± SE(   ) = -0.54%/y ± 0.009%/y;      ± SE(    ) = -0.278%/y ± 0.053%/y,   = -

4.19,   = 4.67×10-4, power > 99%;     /    = 5.2).  

BA estimates. Aside from modeling the dependence of regional volumes on CA, we used regional 

volumes to estimate the   s of HC subjects. As already noted, the bias-corrected linear models 

describing HC subjects’ regional volume trajectories with age can estimate CA based on regional 

volumes with a MAE of 17 y (  = 2 y) across all regions. 
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In mTBI participants, the linear models generated for the HC participants were used to 

compute regional   s. Across all cerebral cortical regions, the average    over structures mapped 

in mTBI participants was 9.2 years, with a standard deviation of 1.1 years. In other words, in mTBI 

participants assessed six months after injury, the typical (average) brain region was 9.2 years older, 

biologically, than in HC participants with the same CA. The structures that exhibited the largest 

average   s include the posterior-dorsal cingulate gyrus (11.6 y), middle frontal gyrus (11.3 y), 

middle temporal gyrus (11.2 y), orbital sulci (11.0 y), and superior frontal gyrus (10.9 y). Conversely, 

the structures with the lowest AGs include the nucleus accumbens (4.0 y), thalamus (5.4 y), 

amygdala (6.0 y), putamen (6.5 y), and the hippocampus (7.2 y). Thus, in mTBI participants, the 

region with the largest average amount of mTBI-related aging is the posterior dorsal aspect of the 

cingulate gyrus. In the average mTBI participant, this region is 11.6 y older than in the typical HC 

participant of the same CA. Similarly, the region with the smallest average amount of mTBI-related 

aging is the nucleus accumbens. In the average mTBI participant, this region is only 4.0 y older than 

in the typical HC participant of the same CA.   

Prediction of cognitive scores. Results for the linear regressions predicting cognitive scores using 

omnibus (   and   s) and reduced (   only) models are reported in eTable 4. Compared to the   -

only model, inclusion of regional   s in the omnibus model explained significantly more variance for 

EVMI and WMS (20.74% and 12.77% more variance, respectively, in the omnibus model compared 

to the reduced model). The omnibus and reduced models explained similar amounts of variance for 

IR, VF, and PS (1.60%, 0.49%, and -0.80% additional variance explained by the omnibus model 

compared to the reduced model). For EVMD, the omnibus model explained significantly less 

variance (-9.96%) compared to the reduced model.  

The brain regions with the largest standardized   magnitudes contributed the most to explaining 

cognitive aging above and beyond    (eTable 5). For EVMI, these were the precentral gyrus, 

calcarine sulcus, and lateral superior temporal gyrus. For EVMD, they were the inferior frontal gyrus, 
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calcarine sulcus, collateral and lingual sulci, middle frontal gyrus, and precentral sulcus. For WMS, 

they were the middle frontal gyrus, inferior frontal gyrus, lateral superior temporal gyrus, orbital 

gyrus, postcentral gyrus, superior temporal gyrus, orbital sulcus, subparietal sulcus, inferior occipital 

gyrus/sulcus, parieto-occipital sulcus, and parahippocampal gyrus.  

Discussion 

Interpretation of findings. The most significant group differences in how regional volume depends on 

age were observed in the thalamus, nucleus accumbens, cerebellum, middle temporal gyrus, and in 

the anterior cingulate gyrus and sulcus (eTable 3). Our study reveals the relative vulnerability of 

brain structures to mTBI-related aging above and beyond any aging due to typical senescence like 

that observed in HC participants. Our modelling highlights the posterior dorsal aspect of the 

cingulate gyrus as being most susceptible to mTBI-related aging effects, whereas the nucleus 

accumbens is least susceptible. Thus, the nucleus accumbens may be more resilient to mTBI-related 

aging compared to other brain regions. This structure may also better reflect typical aging processes 

compared to other regions, as we reported elsewhere for HC participants (33). Prior literature has 

highlighted the importance of subcortical structures like the nucleus accumbens in a variety of 

cognitive tasks, including task switching behavior, financial risk taking, cognitive-motor dual tasks, 

and memory-tasks, all of which are often affected by mTBI (34). The prominence of mTBI-related 

effects on the subcortex is also highlighted by findings of subcortical neurodegeneration during the 

chronic stage of mTBI (35).  

The subcortical structure with the largest TBI-related effect on regional aging, as reflected by 

the group difference in regression coefficients      -     (  = -5.4) is the thalamus. Aside from mTBI, 

conditions such as mild cognitive impairment, AD, multiple sclerosis, and Parkinson’s disease also 

demonstrate thalamic atrophy (36). Findings of thalamic vulnerability to disease processes is 

interesting in the context of symptomatic associations between thalamic volume and increased 

sensory sensitivities, sleep disruption, and cognition, as found both in mTBI subjects (37) and in 
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neurodegenerative disease (38). Longitudinal studies indicate that thalamic atrophy is frequently 

caused by mTBI and is associated with functional outcome (39). Our finding of significantly greater 

thalamic atrophy in mTBI participants compared to HCs confirms that this region is susceptible to 

injury, disease, and aging. Our results also highlight the importance of future studies to explain this 

vulnerability mechanistically in view of formulating strategies to reduce it. This is of note given the 

evidence that TBI exacerbates neurodegenerative processes leading to higher risk for AD (40).  

Our findings also identify the nucleus accumbens as particularly sensitive to typical aging and 

to mTBI-related effects on aging. Thus, in both HCs and mTBI participants, this structure exhibits the 

strongest dependence of volume on age. Relative to HCs, this nucleus also has the largest mTBI-

related increase in the rate of volume decrease with age. In healthy adults, the nucleus accumbens 

has been described as providing an interface between the limbic and motor systems as well as being 

involved in motivation and reward behavior (41). Furthermore, the nucleus accumbens is implicated 

in various neurodegenerative diseases including schizophrenia, Parkinson’s disease, AD, 

Huntington’s disease (2,42), among other conditions. Because TBI often involves deficits of cognitive 

control and motor function, future studies should examine the relationship between the    of the 

nucleus accumbens and each of these functional domains. 

In HCs, the structure with the second strongest dependence of volume on age is the 

amygdala. This structure frequently atrophies in tandem with the hippocampus, the severity of both 

phenomena being highly correlated with age-related changes in cognitive performance (43). Age-

related atrophy of the amygdala is prominent in AD, where it parallels disease stages and severity of 

clinical symptoms (44). There, atrophy of the amygdala is also associated prominently with decline in 

motor behavior (45) and with clinical ratings of cognition such as the Mini Mental State Examination 

and the Clinical Dementia Rating Sum of Boxes (44). 

The middle temporal gyrus is one cortical structure with both strong dependence of volume 

on age and with large mTBI effect on this dependence (Figure 4, eTable 3). Previous studies have 
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found that it is vulnerable to cerebral microbleeds and associated with increased depressive 

symptoms after mTBI (46). We also found that atrophy (regional volume decrease) of this gyrus 

predicted lower WMS scores to a greater extent than CA alone, in accordance with previous studies 

that noted working memory reliance on medial temporal lobe structures (e.g., 47,48). The middle 

temporal gyrus has been associated with modified functional activity and organization in subjects 

with mild cognitive impairment and AD (49). This region is further associated with cortical thinning in 

patients with cognitive impairment or vascular white matter lesions (50). Functional dysfunction 

implicating the middle temporal gyrus has been associated with reports of depression severity and 

delayed memory in patients with mild cognitive impairment (51). The volume of the right middle 

temporal gyrus, a structure equally implicated in affect regulation, has also been positively 

associated with social anxiety (52). Additionally, increased atrophy of the middle temporal gyrus 

occurs in patients with mild cognitive impairment who later convert to AD (53), as well as in patients 

with type 2 diabetes mellitus (54). These findings may reflect incident pre-traumatic morbidities that 

synergize with mTBI to increase the risk of further neurodegeneration. 

One longitudinal study reports that brain atrophy occurs at an average rate of ~4.16%/y 

after mTBI across all brain regions, compared to 1.49%/y in HCs (10). Our group comparison 

indicates that, at the macroscale, mTBI participants exhibit a decrease in most regional volumes with 

age that is at least twice faster than that of HCs. These differences, most of which are significant, 

pertain to gyri and sulci in the frontal and temporal lobes (Figure 4). This may be because most 

mTBIs are fronto-temporal (55), such that our findings could reflect how primary injuries lead to 

cortical atrophy in these areas. Aside from cortical atrophy due to neuron loss, our findings may also 

mirror loss of connectivity due to traumatic axonal injury or to breakdown of the blood-brain barrier, 

as reflected in the presence or predominance of cerebral microbleeds in frontal and temporal 

regions (56).  
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Our findings on mTBI participants’ regional BAs may reflect deviations from normality in age-

related neuroanatomy trajectories. Amongst nearly all structures examined in mTBI participants, 

regional volume yielded positive AGs (reflective of older BA). Typically, cortical structures’ BAs had 

little intrasubject variance, which may reflect global acceleration of brain aging after mTBI. Notably, 

however, cortical structures exhibited older BAs, on average, than subcortical regions. Our results on 

regional brain aging provide insights on the differential rates of post-traumatic cortical aging relative 

to HCs. Because our study examines the relative aging rates of brain regions using univariate models, 

our results should not be interpreted as attempting to estimate the overall (global) age of the brain. 

The fact that we use univariate regression models to predict regional BA may explain why our 

average MAEs, being computed across brain regions for regional BAs, are larger than those 

computed by other studies for the entire brain using more than one measure. For example, when 

computed from volume, the MAE of regional BA is 17 y, which considerably more than the typical 

MAE of ~5 y or less computed by many BA estimators (57). This suggests only that, for the average 

brain region, the univariate setting used here to calculate regional BAs is inadequate for estimating 

the global BA of the entire brain. In other words, the volume of the typical brain region does not 

predict CA nearly as well as the weighted sum of all regional brain volumes. This is to be expected of 

most univariate models, which are relatively ill-equipped to explain as much variance as a 

multivariate model with far more explanatory variables. Furthermore, our MAEs computed across 

regions merely reflect regional variability in brain aging and should not be compared against the 

(often much smaller) MAEs of models that quantify the variability of global brain aging across 

subjects. Indeed, it would be unexpected to encounter such low MAEs when using a univariate 

model to capture because such a model cannot explain as much variance as a multivariate (whole-

brain) BA estimation model like the one that we reported elsewhere (33) and that yielded an MAE of 

6.6 years when computed across all mTBI participants studied here.   

Some regional brain volumes were found to reflect significantly more cognitive score 

variability than predicted by CA and were significant at an uncorrected level (p < 0.05, see eTable 5). 
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When predicting EVMI and WMS scores, the inclusion of AGs contributed significantly, over and 

above CA, to explaining model variance. We did not expect that any single region’s volume could 

explain any of our cognitive measures partly because cognitive aging is mediated by many biological 

processes (e.g., reductions of dendritic complexity leading to subtle morphometry changes across 

more than one parcel) that are not captured well by macroscale imaging measures like ours (58,59). 

Furthermore, cognitive measures often rely on processes that recruit many discontiguous regions, 

such that a single region’s macroscale atrophy rarely reflects the complex brain processes that 

explain cognitive scores.  

Limitations and comparison to other studies. Although our reported findings are significant and rely 

on well-powered tests, the cross-sectional nature of our data is a limitation because our computed 

rates of volume alterations with age cannot be equated to atrophy rates. Nevertheless, despite 

modest follow-up periods, sample sizes, and aggregation across TBI severities, longitudinal studies 

corroborate our findings on the thalamus (60), nucleus accumbens (61), and middle frontal gyrus 

(62). Conversely, whereas our sample size is larger than those of similar studies, our study is limited 

by its cross-sectional nature. Thus, to establish how mTBI causes the brain to atrophy as a function 

of age at injury, future research should investigate post-traumatic regional atrophy longitudinally 

using approaches that can resolve biological mechanisms. 

One limitation of our study is the fact that it aggregates data from several sources, such that 

the variance due to differences across cohorts must be considered.  Because HC and mTBI 

participants had not been scanned as part of the same study, we aggregated HC data from several 

repositories to provide comparisons that reflect inter-scanner heterogeneity (e.g., differences in 

scanning parameters). Although the statistical effects of cohort, sex, and FS version were regressed 

out, confounds related to scanner type, acquisition site, sequence parameters, and to other factors 

were not accounted for here and may, in fact, be difficult or even impossible to capture adequately 

using linear regression. The limitations of standard statistical models extend to our calculated 
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associations between age and brain features. Here, extending our analysis to higher-order models 

was not attempted due to the dangers of overfitting, to the difficulty of interpreting higher-order 

models, and to their potentially incremental insights of such models despite their complexity. 

Nevertheless, future studies should investigate nonlinear relationships between regional volumes 

and age at injury to further describe the effects of TBI on the aging brain. 

Finally, rather than focusing on laterality effects, we averaged regional volumes across 

hemispheres before implementing linear regression of volume on age.  Our motivation for this was 

the fact that spatial TBI patterns are often neuroanatomically asymmetric, and this confound cannot 

be accounted for adequately without averaging across hemispheres unless detailed information on 

spatial injury profiles is available. Nevertheless, laterality effects warrant investigation, as the 

interaction between TBI location and the functional correlates of laterality (e.g., handedness) can 

provide insight into the dependence of regional volumes on age, both in typical aging and after TBI. 

 

Conclusion 

The results of our study provide a uniquely granular approach to the volumetric neuroanatomical 

changes in victims of mTBI relative to an HC cohort. Strikingly, in an adult cohort that spans a wide 

age range, we observe significantly greater decreases in regional volumes with age in mTBI subjects 

compared to HCs. Furthermore, when used to estimate age using linear models, regional volumes of 

the brain reveal significantly older BA in mTBI participants than in HCs of the same age and sex. In 

concert, these results offer a valuable foundation for future investigations on how mTBI affects brain 

BA. 
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Tables 

Table 1. Participant demographics. For each cohort, the sample size   and number of females are 

listed. For age, the range, mean (μ), and standard deviation (σ) of each cohort are listed in years (y). 

   age [y] 

HC cohort  a   females range μb σc 

ADNI 513 278 56 – 95 75 7 

HCP-A 508 294 36 – 80 56 12 

HCP-YA 1112 605 22 – 37 29 4 

UK Biobank 1285 676 45 – 83 63 10 

all  3418 1853 22 – 95 53 19 

      

TBI cohort 113 44 21 – 83  43 17 

Note.  Cam-CAN=Cambridge Centre for Ageing and Neuroscience, HCP-A=Human Connectome 

Project Aging, HCP-YA=Human Connectome Project Young Adult. 

 a=sample size 

μb=mean age of sample 

σc=standard deviation of age of sample 
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Figure Captions 

Figure 1. Comparison of selected regression coefficients   reflecting age-related rates of regional 

brain volume change in (A) HCs (   ), (B) TBI participants (    ). (C) The ratio          conveys the 

factor whereby regional rates of volume change are higher in mTBI participants compared to the HC 

reference. The six structures listed in (A), (B) and (C) have the largest magnitudes of    ,      and 

        , respectively. Thus, in (A) and (B), the structures listed have the fastest rates of volume 

decrease with age in HCs and mTBI participants, respectively. In (C) the structures listed are those 

whose rate of volume decrease with age are most affected by TBI relative to all other regions. 

 

Figure 2. Regression coefficients     obtained from regional volumetric models of healthy control 

participants plotted as a heatmap on a model cortical surface and subcortical features. Gray color 

indicates that the test of           had statistical power under 80% or a  -value below 0.05 after 

Benjamini-Hochberg correction for multiple comparisons. Darker red hues indicate a more negative 

   , and therefore a stronger dependence of regional volume on age. 

 

Figure 3. Regression coefficients      obtained from regional volumetric models of mild traumatic 

brain injury participants plotted as a heatmap on a model cortical surface and subcortical features. 

Gray color indicates that the test of           had statistical power under 80% or a p-value below 

0.05 after Benjamini-Hochberg correction for multiple comparisons. Darker red hues indicate a more 

negative     , and therefore a stronger dependence of regional volume on age. 

 

Figure 4. The ratio of regression coefficients         , obtained from regional volumetric models of 

either mild traumatic brain injury or healthy control participants, plotted as a heatmap on a model 
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cortical surface and subcortical features. Gray color indicates that the test of    
(        )

√  (    )   (   )
 

  had statistical power under 80% or a  -value below 0.05 after Benjamini-Hochberg correction for 

multiple comparisons. Darker red hues indicate higher values of the ratio         , and therefore a 

more significant change in regression coefficients die to mild traumatic brain injury. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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